Sunday, September 15, 2019

Covalent Bonds


Recall that an atom is chemically stable when its outermost energy level is full. A state of stability is achieved by some elements by forming chemical bonds. A chemical bond is the force that holds together the elements in a compound. One way in which atoms fill their outermost energy levels is by sharing electrons. For example, individual atoms of hydrogen each have just one electron. Each atom becomes more stable when it shares its electron with another hydrogen atom so that each atom has two electrons in its outermost energy level.  How do these two atoms stay together? The nucleus of each atom has one proton with a positive charge, and the two positively charged protons attract the two negatively charged electrons. This attraction of two atoms for a shared pair of electrons that holds the atoms together is called a covalent bond.

Molecules A molecule is composed of two or more atoms held together by covalent bonds. Molecules have no overall electric charge because the total number of electrons equals the total number of protons. Water is an example of a compound whose atoms are held together by covalent bonds. The chemical formula for a water molecule is H2O because, in this molecule, two atoms of hydrogen, each of which need to gain an electron to become stable, are combined with one atom of oxygen, which needs to gain two electrons to become stable. A compound comprised of molecules is called a molecular compound. Polar molecules Although water molecules are held together by covalent bonds, the atoms do not share the electrons equally. The shared electrons in a water molecule are attracted more strongly by the oxygen atom than by the hydrogen atoms. As a result, the electrons spend more time near the oxygen atom than they do near the hydrogen atoms. This unequal sharing of electrons results in polar molecules. A polar molecule has a slightly positive end and a slightly negative end.

No comments:

Post a Comment