Friday, January 20, 2017

Biological Ecology

The term ecosystem is a contraction of the phrase ecological system, which encompasses biological ecology. Biological ecology has a closer affiliation with the domain of PHYSICAL GEOGRAPHY, yet due to the nature of ecology as a mediator of all types of geographers, biological interpretation of the Earth also contributes to the studies of cultural geography.

In studying the Earth from biological ecology perspectives, the concept of biota serves as one of the foundations of this approach. The term biota refers to the total group of plant and animal life in a region. Biota is subdivided from flora to fauna. An ecosystem includes biota, that is, all the organisms, in a given area, but it is more than a community of plants and animals.

The ecosystem as a concept is based on the holistic interactions among and between organisms. The ecosystem also involves the nonliving portion of the environment, which includes nutrients and energy, such as soil, rocks, water, sunlight, and atmosphere. Thus, an ecosystem is an essential collection of plants and animals along within the surrounding environment and all the interactions among these organisms. The energy flow among the various components of the ecosystem plays a crucial role in biological ecology, as it is responsible for determining how a biological community is built.

Another fundamental concept of biological ecology is called a BIOME. A biome provides us with the most appropriate scale for understanding world distribution patterns of species and identifies recognizable assemblage of plants and animals through interaction with its environment. A biome is usually classified on the basis of its dominant vegetation along with the bulk of the biomass, which is the total weight of all organisms in the biome, as well as the most obvious and conspicuous visible component of the landscape, such as tropical RAINFOREST, DESERT, and TUNDRA.

The survival of plants and animals depends on an intimate and sometimes precarious set of relationships with other elements of the environment. Throughout environmental relationships, there are two major factors at work: intraspecific competition, which happens among members of the same species, and interspecific competition, which exists among members of different species. Both plants and animals compete with one another in search of light, water, nutrients, and favorable habitat in a dynamic environment. There are recognizable and predictable patterns of biotic distributions based on environmental relationships.

Various climatic factors play a dominant role as the most prominent environmental constraints on biological ecology at almost any scale. The four major components of CLIMATE are light, moisture, temperature, and wind. Light and photosynthesis are responsible for activating plants to produce stored chemical energy, and light also has a significant influence on determining the shapes and sizes of plants.

Moisture is the second climatic factor to characterize biological ecology. The broad distribution patterns of the biota are mostly determined by the level of moisture. The process of biotic evolution has been characterized by the adaptation of plants and animals to scarcity, abundance, or excess in moisture availability. In biological ecology, moisture is often synonymous with water.

Although the availability of water is largely determined by these atmospheric conditions, it is not always dependent on climate alone, as the relationship with precipitation evaporation should also be observed. Air and soil temperature are also important to biotic distribution patterns. Moderate temperatures attract more species of both plants and animals that cannot survive in cold regions. Wind assists in creating ecosystems by influencing biotic distributions with its physical strength of causing biota frying and sometimes even violently uprooting trees. On the positive side, wind sometimes aids the dispersal of biota by carrying pollen, seeds, lightweight organisms, and flying creatures to contribute to biological diversity in an area.

Characteristics of soil that vary from one region to another and its relationship with local organisms are known as edaphic factors. Edaphic factors bring major influence to biotic distributions. These factors have a direct and immediate impact on flora, but the impact is usually indirect on fauna thanks to most animals’ mobility. As long as we live on the Earth, soil is a major component of the habitat of any vegetation, and its characteristics significantly determine rooting capabilities and nutrient supply through soil texture and structure, human existence, chemical composition, and relative abundance of soil organisms.

No comments:

Post a Comment