Weathering is the process in which materials on or near Earth’s surface break down and change. Mechanical weathering is a type of weathering in which rocks and minerals break down into smaller pieces. This process is also called physical weathering. Mechanical weathering does not involve any change in a rock’s composition, only changes in the size and shape of the rock. A variety of factors are involved in mechanical weathering, including changes in temperature and pressure.
Effect of temperature Temperature plays a role in mechanical weathering. When water freezes, it expands and increases in volume by 9 percent. You have observed this increase in volume if you have ever frozen water in an ice cube tray. In many places on Earth’s surface, water collects in the cracks of rocks and rock layers. If the temperature drops to the freezing point, water freezes, expands, exerts pressure on the rocks, and can cause the cracks to widen slightly. When the temperature increases, the ice melts in the cracks of rocks and rock layers. The freeze-thaw cycles of water in the cracks of rocks is called frost wedging. Frost wedging is responsible for the formation of potholes in many roads in the northern United States where winter temperatures vary frequently between freezing and thawing.
Effect of pressure Another factor involved in mechanical weathering is pressure. Roots of trees and other plants can exert pressure on rocks when they wedge themselves into the cracks in rocks. As the roots grow and expand, they exert increasing amounts of pressure which often causes the rocks to split.
On a much larger scale, pressure also functions within Earth. Bedrock at great depths is under tremendous pressure from the overlying rock layers. A large mass of rock, such as a batholith, may originally form under great pressure from the weight of several kilometers of rock above it. When the overlying rock layers are removed by processes such as erosion or even mining, the pressure on the bedrock is reduced. The bedrock surface that was buried expands, and long, curved cracks can form.
These cracks, also known as joints, occur parallel to the surface of the rocks. Reduction of pressure also allows existing cracks in the bedrock to widen. For example, when several layers of overlying rocks are removed from a deep mine, the sudden decrease of pressure can cause large pieces of rocks to explode off the walls of the mine tunnels.
Over time, the outer layers of rock can be stripped away in succession, similar to the way an onion’s layers can be peeled. The process by which outer rock layers are stripped away is called exfoliation. Exfoliation often results in dome-shaped formations, such as Moxham Mountain in New York and Half Dome in Yosemite National Park in California.
No comments:
Post a Comment